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pathogenic (pARB)



Environmental risk assessment (ERA)



Extended­spectrum­β­lactamase (ESBL)
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Human health risk assessment (HHRA)



Microbial risk assessment (MRA)



Methicillin­resistant Staphylococcus aureus (MRSA)
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Abstract 

Background: Only recently has the environment been clearly implicated in the risk of antibiotic 

resistance to clinical outcome, but to date there have been few documented approaches to 

formally assess these risks. 

Objective: We present possible approaches and identify research needs to enable human health 

risk assessments (HHRA) that focus on the role of the environment in antibiotic treatment failure 

caused by antibiotic­resistant pathogens. 

Methods: The authors participated in a workshop held in Quebec, Canada, March 4­8, 2012, to 

define the scope and objectives of how to undertake an environmental assessment of antibiotic 

resistance risks to human health. We focused on key elements of environmental resistance 

development ‘hot­spots’, exposure assessment (unrelated to food) and dose­response to 

characterize risks that may improve antibiotic resistance management options. 

Discussion: Various novel aspects to traditional risk assessments were identified to enable an 

assessment of environmental antibiotic resistance. These include accounting for an added 

selective pressure on the environmental resistome that over time allows for antibiotic resistant 

bacterial (ARB) development; identifying and describing rates of horizontal gene transfer (HGT) 

in the relevant environmental ‘hot­spot’ compartments; and modifying traditional dose­response 

approaches to address doses of ARB for various health outcomes and pathways. 

Conclusions: In this paper we provide a proposal for the inclusion of environmental aspects of 

antibiotic resistance development in the processes of any HHRA addressing ARB. Due to limited 

available data a multi­criteria decision analysis (MCDA) approach is suggested as a useful way 

forward to undertake an HHRA of environmental antibiotic resistance that informs risk 

managers. 
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Introduction 

This review is based on a workshop held in Québec, Canada in March 2012 which focused on 

antibiotic resistance in the environment and approaches to assessing and managing effects of 

anthropogenic activities. The human health concern was identified as environmentally­derived 

antibiotic­resistant bacteria (ARB) that may adversely affect human health (e.g. reduced efficacy 

in clinical antibiotic use, more serious or prolonged infection) by either direct exposure of 

patients to antibiotic­resistant pathogen(s) or by exposure of patients to resistance determinants, 

and subsequent horizontal gene transfer (HGT) to bacterial pathogen(s) on/within a human host, 

as conceptualized in Figure 1. Antibiotic­resistant bacterial hazards develop in the environment 

as a result of direct uptake of antibiotic­resistant genes (ARG) via various mechanisms (e.g. 

mobile genetic elements such as plasmids, integrons, gene cassettes or transposons) and/or 

proliferate under environmental selection caused by antibiotics and co­selecting agents such as 

biocides, toxic metals and nanomaterial stressors (Qiu et al. 2012; Taylor et al. 2011), or by gene 

mutations (Gillings and Stokes 2012). Dependent on the presence of recipient bacteria these 

processes generate either environmental antibiotic­resistant bacteria (eARB) or pathogens with 

antibiotic­resistance (pARB) (Figure 1). 

Human health risk assessment (HHRA) is the process to estimate the nature and probability of 

adverse health effects in humans who may be exposed to hazards in contaminated environmental 

media, now or in the future (U.S. EPA 2012). In this paper we focus on how to apply HHRA to 

the risk of infections with antibiotic resistant bacterial pathogens, as they are an increasing cause 

of morbidity and mortality, particularly so in developing regions (Grundmann et al. 2011). An 

antimicrobial­resistant microorganism has the ability to multiply or persist in the presence of an 

increased level of an antimicrobial agent relative to a susceptible counterpart of the same species. 

5
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In this paper we limit the resistant group of microorganisms to bacteria and therefore to 

antibiotic resistance, where the term antibiotic being used as synonymous with antibacterial. It is 

important to understand the contribution that the environment has on the development of 

resistance in both humans and animals pathogens, as therapeutic­resistant infections may lead to 

longer hospitalization, longer treatment time, failure of treatment therapy and the need for 

treatment with more toxic or costly antibiotics, as well as an increased likelihood of death. 

A vast amount of work has been undertaken to understand the contribution and roles played by 

hospital and community settings in the dissemination and maintenance of antibiotic­resistant 

bacterial infections in humans. A particular area of focus in terms of exposure in the community 

setting has been the contribution from the use of antibiotics in livestock production and the 

presence of eARB and pARB in food of animal origin. In 2011, the Codex Alimentarius released 

guidelines on processes and methodologies for applying risk analysis methods to foodborne 

antimicrobial resistance related to the use of antimicrobials in veterinary medicine and 

agriculture (Codex Alimentarius Commission 2011). The Commission was established in 1963 

by FAO and WHO to harmonise international food standards, guidelines and codes of practice to 

protect the health of consumers and ensure fair trade practices in the food trade. 

Furthermore, antibiotics and other antimicrobials are also released into the environment from 

human sewage (Dolejska et al. 2011), intensive animal husbandry and waste from 

pharmaceutical manufacture (Larsson et al. 2007). The environmental consequences from the 

use/release of antibiotics from various sources (Kümmerer 2009a, b) and the HGT of antibiotic­

resistance genes between indigenous environmental and pathogenic bacteria and their resistance 

determinants (Qiu et al. 2012; Börjesson et al. 2009; Cummings et al. 2011; Chen et al. 2011; 

Chagas et al. 2011; Gao et al. 2012; Forsberg et al. 2012) has yet to be quantified ­ but is of 
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global concern (WHO 2012a; Finley et al. 2013). The genetic element(s) encoding for the ability 

of microorganisms to withstand the effects of an antimicrobial agent are located either 

chromosomally or extra­chromosomally and may be associated with mobile genetic elements 

such as plasmids, integrons, gene cassettes or transposons, thereby enabling horizontal and 

vertical transmission from resistant to previously susceptible strains. From an HHRA point of 

view, the emergence of ARB in source and drinking waters (De Boeck et al. 2012; Isozumi et al. 

2012; Shi et al. 2013) further highlights the need to place these emerging environmental risks in 

perspective. Yet, assessing the range of environmental contributions to antibiotic resistance may 

not only be complicated by lack of quantitative data, but also by the need to coordinate efforts 

across different agencies that may have jurisdiction over environmental risks versus those to 

human and animal health. 

A key consideration for ARB development in the environment is that resistance genes can be 

present due to natural occurrence (D'Costa et al. 2011). Further, the use of antimicrobials in 

crops, animals and from human wastes provides a continued entry of antibiotics to the 

environment, along with possible novel genes and ARB. A summary of the fate, transport and 

persistence of antibiotics and resistance genes following land application of waste from food 

animals receiving antibiotics or following outflow to surface water from sewage treatment has 

emphasized the need to better understand the environmental mechanisms of genetic selection, 

gene acquisition and dynamics of resistance genes (resistome) and their bacterial hosts (Chee­

Sanford et al. 2009; Crtryn 2013). For example, the presence of antibiotic residues in water from 

pharmaceutical manufacturers in certain parts of the world (Fick et al. 2009), ponds receiving 

intensive animal wastes (Barkovskii et al. 2012), aquaculture waters (Shah et al. 2012) and 

sewage outfalls (Dolejska et al. 2011) are considered to be important sources, amongst others, 
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leading to the presence of ARG in surface waters. In particular, the comparatively high 

concentrations of antibiotics found in the effluent of pharmaceutical production plants have been 

associated with an increased presence of ARG in surface waters (Kristiansson et al. 2011; Li et 

al. 2010; Li et al. 2009). Most recently, 100% sequence identity of ARG from a diverse set of 

clinical pathogens and common soil bacteria (Forsberg et al. 2012) has highlighted the potential 

for environmental HGT between eARB and pARB. 

Despite these concerns, there are few risk assessments that evaluate the combined impacts of 

antibiotics, ARG and ARB in the environment on human and animal health (Keen and Montforts 

2012). Recent epidemiological data have included assaying for ARB in drinking water and the 

susceptibility of commensal Escherichia coli in household members. Water was a risk factor but 

so were other factors not directly related to the local environment that accounted for the presence 

of resistant E. coli in humans (Coleman et al. 2012). In many studies, native bacterial members 

of drinking water systems are clearly able to accumulate ARG (Vaz­Moreira et al. 2011). 

In addition to addressing environmental risks arising from the development of antibiotic 

resistance, there is also the low probability but high impact ‘one­time­event’ type of risk event, 

to consider. This exceedingly rare event that results in the transfer of a novel (to clinically 

important bacteria) resistance gene from a harmless, environmental bacterium to a pathogen, 

need only happen once should a human be the recipient of the novel pARB. Unlike the 

emergence of SARS and similar viruses where, in hindsight, the risk factors are now well 

understood (Swift et al. 2007), the conditions for a ‘one­time­event’ could occur in a range of 

‘normal’ habitats. Once developed, the resistant bacterium/gene has a possibility to spread 

between humans around the world (such as seen with the spread of New Delhi metallo­beta­

lactamase­1 (NDM­1) resistance (Wilson and Chen 2012)), promoted by our use of antibiotics. 
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While it appears very difficult to quantify the probability for such a rare event (including 

assessing the probability for where it will happen and when), there is considerable value in trying 

to identify the risk factors (such as pointing out critical environments for HGT to occur, 

identifying pharmaceutical exposure levels that could cause selection pressures and hence 

increase the abundance of a given gene). After such a critical HGT event, then we may move 

into a more quantitative kind of HHRA. 

The overall goal of the workshop was to identify the significance of ARB within the 

environment and to map out some of the complexities involved, so as to identify research gaps 

and provide statements on the level of scientific understanding for various ARB issues. As such a 

broad range of international delegates spanning academics, government regulators, industry 

members and clinicians discussed various issues. The focus of this paper came from discussions 

to improve our understanding of the human health risks, in addition to epidemiological studies, 

given the need to develop human health risk assessment approaches to explore potential risks and 

inform risk management. As the end goal of an assessment depends on the context (research, 

regulation etc.), this paper provides a generic approach to undertake a human health risk 

assessment of environmental ARB that can be adapted to the users’ interest (conceptualized in 

Figure 1). Given the many uncertainties, identified research gaps are also highlighted. 

General considerations for an assessment of environmental ARB risks 

Understanding other on­going relevant international activities and the types of antibiotics used 

provide good starting points to aid in framing a risk assessment of ARB. A report from an Ad­

Hoc Task Force of the Codex Alimentarius Commission (2011) describes eight principles that 

are specific to foodborne antimicrobial resistance risk analysis, several of which are generally 

9
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applicable to a human health risk assessment of environmental ARB as bulleted at the end of this 

section. Examples include the recommendations of the “Joint FAO/WHO/OIE Expert Meeting 

on Critically Important Antimicrobials” (FAO/WHO/OIE 2008) and the “WHO Advisory Group 

on Integrated Surveillance of Antimicrobial Resistance (WHO­AGISAR)” (WHO 2012b), which 

provide information for setting the priority antibiotics for a human risk assessment. It should also 

be noted that there are significant national and regional differences in the use of antibiotics, 

resistance patterns, and human exposure pathways. 

In general, risk assessments are framed by identifying risks and management goals, so that the 

assessment informs the need for possible management options and enables evaluation of 

management success. There was consensus at the workshop that management could best be 

applied at points of antibiotic manufacturing and use, agricultural operations including 

aquaculture, and wastewater treatment plants (Pruden et al. 2013). Nonetheless, assessing the 

relative impact of managing any particular part of a system is hampered by the lack of 

knowledge on their relative importance for the overall risk. That is, as the WHO stated recently 

(2012a): “the emergence of AMR is a complex problem driven by many interconnected factors; 

single, isolated interventions have little impact”. Hence, a starting point for an assessment of 

environmental antibiotic­resistance risks intended to aid risk management is a ‘theoretical risk 

assessment pathway’ based on local surveillance data on the occurrence and types of antibiotics 

used in human medicine, crop production, animal husbandry and companion animals, 

information on ARG and ARB in the various environmental compartments (in particular soil and 

aquatic systems including drinking water) and related disease information. This should be 

amended by discussion with the relevant stakeholders, which requires extensive risk 

communication and could form part of the multi­criteria decision analysis (MCDA) approach 
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discussed in detail in the following sections. Pruden et al. (2013) also advocate coupling 

environmental management and mitigation plans with targeted surveillance and monitoring 

efforts, in order to judge the relative impact and success of the interventions. 

Examining Figure 1 it becomes clear that some details require quantitative measures to undertake 

a useful human health risk assessment. Hence the key issue is how estimates can be made by 

experimental and modeling approaches. Furthermore, there are hazard concentration, time and 

environmental compartment­dependent aspects. Firstly, for environmental bacteria (including 

pathogens that may actively grow outside of hosts) to develop into eARB/pARB (processes 1 

and 2, Figure 1), the current understanding is that for non­mutation derived antibiotic­resistance 

a selective pressure (i.e. presence of antibiotics or antibiotic­resistance determinants) must be 

maintained over some time in the presence of antibiotic determinants; for existing pARB 

released into the environment, survival in environmental media is the critical factor. However, 

the exact mechanisms and quantitative relationships between selective pressures and ARB 

development have yet to be elucidated, and may be different depending upon the antibiotic, the 

bacterial species and resistance mechanisms involved. In cases where selective pressure is 

removed, the abundance of antibiotic­resistance ARB may be reduced, but not to extinction. 

(Cottell et al. 2012; Andersson and Hughes 2010, 2011). Even a minority of ARB at the 

community level represents a reservoir of ARG for horizontal transfer once pressure is reapplied. 

Overall, as it seems inevitable that ARB will eventually develop against any antibiotic (Levy and 

Marshall 2004), the key management aim would seem to be to delay and confine such a 

development as much as possible. 

Secondly, a robust quantitative risk assessment will require rates of HGT and/or gene mutations 

in the relevant compartments (processes 3­5 in Figure 1) to be described for different 
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combinations of donating eARB and receiving pARB strains. The lack of quantitative estimates 

for mutation/HGT of ARG is a major data gap. 

Thirdly, traditional microbial risk assessment dose­response approaches (captured in processes 6 

and 8 of Figure 1) could be used to address the likelihood of infection (Codex Alimentarius 

Commission 2011; U.S. Department of Agriculture/Food Safety and Inspection Service 

(USDA/FSIS) and U.S. Environmental Protection Agency (EPA) 2012), but the novel aspect 

required here, in addition to HGT and ARB selection, would be to address quantitative dose­

response relationships for eARB (in the presence of a sensitive pathogen in/on a human), 

(Processes 3 and 6, Figure 1). Importantly, the key difference from traditional HHRA undertaken 

in some jurisdictions is that it is essential to include environmental processes to fully assess 

human risks associated with antibiotic resistance. 

Therefore, the sort of information that should be documented for a human health oriented risk 

assessment of environmental ARB includes [adapted from (Codex Alimentarius Commission 

2011)]: 

•	 Clinical and environmental surveillance programmes for antibiotics, ARB and their 

determinants, with a focus on regional data reporting the types and use of antibiotics in 

human medicine, crops and for commercial and companion animals, and globally for 

where crop and food animals are produced; 

•	 Epidemiological investigations of outbreaks and sporadic cases associated with ARB, 

including clinical studies on the occurrence, frequency and severity of ARB infections; 

•	 Identification of the selection pressures (time and dose of selecting/co­selecting agents) 

required to select for resistance in different environments, and subsequent HGT to 
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human­relevant bacteria – based on a summary of previously identified ‘hot­spots’ 

describing the frequency of HGT and uptake of ARG into environmental bacteria, 

including environmental pathogens; 

•	 Human, laboratory and/or field animal/crop trials addressing the link between antibiotic 

usage and resistance (particularly regional data); 

•	 Investigations of the characteristics of ARB and their determinants (ex­situ and in­situ); 

•	 Studies on the link between resistance, virulence and / or ecological fitness (e.g. 

survivability or adaptability) of ARB; 

•	 Studies on the environmental fate of antibiotic residues in water/soil and their 

bioavailability associated with selection of ARB in any given environmental 

compartment, animal or human host resulting in pARB; and 

•	 Existing ARB and related pathogen risk assessments. 

In summary, there are multiple data sources required to undertake a human health risk 

assessment for environmental ARB, where much of the data may be severely limited 

(particularly for a quantitative assessment). Hence the final risk assessment report has to put 

particular emphasis on discussing the evidence trail and weight of evidence for each finding. 

Furthermore, when models are constructed, previously unused datasets should be considered for 

model verifications where possible. 

Applicability of traditional Risk Assessment approaches 

Human health risk assessment of antibiotics in the environment builds from traditional chemical 

risk assessments (National Research Council 1983), starting for example, with an acceptable 

daily intake (ADI) based on resistance data (VICH Steering Committee 2012). A corresponding 

13
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metric for environmental antibiotic concentration could be developed based on the concept of the 

minimum selective concentration (MSC) (Gullberg et al. 2011), defined as the minimum 

concentration of an antibiotic agent that selects for resistance. A major difference from the 

traditional chemical risk assessment approach is that, as with the MSC assay, there is also a need 

to address the human health effects arising from ARGs and resistance determinants that give rise 

to ARB, including resistance associated with mutations (processes 1 and 2, Figure 1). In the 

absence of specific data, a MSC assay could inform a risk assessor on the selective concentration 

of a pharmaceutical or complex mixture of compounds in a matrix of choice, to begin to describe 

thresholds for significant ARB development. 

Moving on from antibiotic to pathogen risks, these may be evaluated through Microbial Risk 

Assessment (MRA), a structured, systematic, science­based approach that builds on the chemical 

risk assessment paradigm, involving problem formulation (describing the hazards, risk setting 

and pathways), exposure assessment of the hazard (ARB), dose­response assessment that 

quantifies the relationship between hazard dose and pARB infection in humans (processes 6 and 

7, Figure 1), and their combination to characterize risk for the various pathways of exposure to 

pathogens identified to be assessed. MRA is used qualitatively or quantitatively to evaluate the 

level of exposure and subsequent risk to human health from microbiological hazards. In the 

context of antibiotic­resistant microorganisms, environmental MRA is in its infancy, but needs to 

address resistant bacteria and/or their determinants. MRA was originally developed for faecal 

pathogen hazards in food and water (ILSI 1996), with more recent modifications to include 

biofilm­associated environmental pathogens, such as Legionella pneumophila (Schoen and 

Ashbolt 2011). Some human pathogens can grow in the environment (and may become pARB, 

14
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processes 1 and 2, Figure 1), and many will infect only compromised individuals, hence they are 

generally referred to as opportunistic pathogens. 

Over the past 20 years, MRA has largely evolved by input from the international food safety 

community, and it is now a well­recognized and accepted approach within food safety risk 

analysis. In 1999, Codex Alimentarius adopted the “Principles and Guidelines for the Conduct of 

Microbiological Risk Assessment CAC/GL­30” (Codex Alimentarius Commission 2009). More 

recently Codex published guidelines for risk analysis of foodborne antimicrobial resistance 

(Codex Alimentarius Commission 2011), and in the US, MRA guidelines for food and water for 

federal US agencies (U.S. EPA and USDA, 2012), which continue to use the four­step 

framework originally described for chemical risk assessment. Several ARB risk assessments 

have been published and reviewed in recent years (McEwen 2012; Geenen et al. 2010; Snary et 

al. 2004). However, nearly all of these studies focus on foodborne transmission; human health 

risk assessments dealing with ARB transmission via various environmental routes or direct 

contact with ARG are sparse. 

For example, Geenen et al. (2010), studied extended­spectrum beta­lactamase [ESBL]­

producing bacteria and identified the following risk factors: previous admission to health­care 

facilities, antimicrobial drugs usage, travelling to high­endemic countries and the presence of 

ESBL­positive family members. They concluded by stating that an environmental risk 

assessment (ERA) would be helpful in addressing the problem of ESBL­producing bacteria, but 

noted that none had been performed. 
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Hazard Identification and Hazard Characterization 

Unfortunately, the authors are unaware of data that quantitatively link ARG uptake and human 

health effects (processes 3 and 6, Figure 1). What does exist in general and is rapidly improving 

in quality, however, are data on the presence of ARGs within various environmental 

compartments (Cummings et al. 2011; Allen et al. 2009; Ham et al. 2012), and specifically of 

clinically relevant resistance genes within soils (Forsberg et al. 2012) (process 1, Figure 1). As 

described previously, precursors that lead to the development of antibiotic­resistant bacterial 

hazards include ARG and mechanisms to mobilise these genes, antibiotics and co­selecting 

agents (Qiu et al. 2012; Taylor et al. 2011) along with gene mutations (Gillings and Stokes 

2012). Dependent on the presence of recipient bacteria these processes generate eARB or pARB 

(processes 1 and 2, Figure 1). 

While the pathways for human exposure to ARB hazards are further described in the 

Environmental Exposure Section, the focus here is on the development and characterization of 

antibiotic­resistant bacterial hazards. The authors are not aware of comprehensive data being 

available for the numerous parameters relevant to individual environmental compartments that 

describe: 1) antibiotic resistance development by antibiotics and other co­selecting agents, 2) the 

flow of antibiotic­resistance genes (resistome) and acquisition elements (e.g. integrons) in native 

environmental compartment bacteria, and 3) the likely range in rates of horizontal and vertical 

gene transfer within environmental compartments. Nonetheless, factors considered important 

include the range of potential pathways involving the release of antibiotics, ARG and ARB into 

and amplifying in environmental compartments such as the rhizosphere, bulk soil, compost, 

biofilms, wastewater lagoons, rivers, sediments, aquiculture, plants, birds, and wildlife. 
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With respect to antibiotics, in general what is required to aid hazard characterization is a listing 

of the local antibiotic classes of concern, what is known of their environmental fate and where 

they may accumulate in particular environmental compartments (such as the rhizosphere versus 

general soil, compost, biofilms, wastewater lagoons, rivers, sediments, aquaculture, plants, birds, 

wildlife, farm animals and companion animals). Selection for ARB (process 2, Figure 1) will 

depend on the type and in­situ bioavailability of selecting/co­selecting agents, abundance of 

bacterial host, as well as the abundance of AR determinants. 

Selection for ARB is further modulated by the nutritional status of the relevant bacterial 

community members as high metabolic activity and high cell density promote bacterial 

community succession and HGT (Sørensen et al. 2005; Brandt et al. 2009). By contrast, HGT is 

relatively independent of the antibiotic, although antibiotics and ARB may be co­transported 

(Chen et al. 2013), and increases in HGT rates are thought to occur in stressed bacteria. For 

example integrase expression can be up­regulated (increased) by bacterial SOS response in the 

presence of certain antibiotics (Guerin et al. 2009). 

While quantitative data that describe the development of pARB in the environment are missing, 

ample evidence exists for the co­uptake by an antibiotic­sensitive pathogen in the presence of 

antibiotic, ARG (such as on a plasmid with metal resistance and/or carbon utilization genes 

(Laverde Gomez et al. 2011; Knapp et al. 2011), or as demonstrated in­vitro for a 

disinfectant/nanomaterial (Qiu et al. 2012; Soumet et al. 2012). 

The spatial distribution of organisms will also impact on transfer (opportunity for close 

proximity), which result from inherent patchiness, soil structure, presence of substrates and so 

forth. In considering gene transfer rates, there may be ‘hot­spots’ of activity, for example, there 
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is evidence for HGT of clinically­relevant resistance genes between bacteria in manure­impacted 

soils (Forsberg et al. 2012), and in association with the rhizosphere due to organic­rich 

conditions (Pontiroli et al. 2009). Likewise, selection pressures for subsequent proliferation of 

eARB may be higher in these ‘hot­spot’ environments (Brandt et al. 2009; Li et al. 2013). 

Therefore, it is important to recognize likely zones of high activity during the problem 

formulation and hazard characterization stages of a risk assessment, and when using sampling to 

identify in­situ exchange rates. As an example marker of anthropogenic impact with potential to 

predict the impact on the mobile resistome, class 1 integrons could be used, given their ability to 

integrate gene cassettes that confer a wide range of antibiotic and biocide resistance (Gaze et al. 

2011). In semi­pristine soils, prevalence may be two or three orders of magnitude lower than in 

impacted soils and sediments (0.001 vs. 1% respectively) (Gaze et al. 2011; Zhu et al. 2013). 

In addition to a huge diversity of eARB hazards, reference pathogens used in microbial risk 

assessments, which may acquire ARG as illustrated in Figure 1, include: (1) foodborne and 

waterborne faecal pathogens represented by Campylobacter jejuni, Salmonella enterica or 

various pathogenic E. coli, and (2) environmental pathogens, such as respiratory, skin or wound 

pathogens represented by Legionella pneumophila, Staphylococcus aureus and Pseudomonas 

aeruginosa. Each of these faecal and environmental pathogens are well known to be able to 

acquire ARG, hence given further data on environmental HGT rates, they could make good 

examples of what are referred to as reference pathogens. However, what is much more 

problematic for a risk assessment, and a current limiting factor, is to describe the rate at which 

the indigenous bacteria transfer resistance to these pathogens within each environmental 

compartment and the human/animal host (processes 3­5, Figure 1). Methods to model and 

experimentally derive relevant information on these environmental issues are discussed within 
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the Environmental Exposure Assessment section below. Data on HGT within the human 

gastrointestinal tract have been summarised by (Hunter et al. 2008). 

Dose­Response relationships 

To properly characterize human risks it is typical to select hazards for which there are dose­

response health data described either deterministically or stochastically, as available for the 

reference enteric pathogens identified above (Schoen and Ashbolt 2010), but have yet to be 

quantified for the skin/wound reference pathogens (Mena and Gerba 2009; Rose and Haas 1999). 

However, as noted above (addressing processes 1­5, Figure 1), an important difference for ARB 

is the need to account for the phenomena associated with selective environmental pressures for 

the development of ARB, then HGT, ultimately to form the human infective dose of either eARB 

or pARB. The exact mechanisms and dose­response relationships have yet to be elucidated, and 

may be different depending on the bacterial species and resistance mechanisms involved. 

Nonetheless, it seems reasonable for the non­compromised human exposed to a pARB to fit the 

published dose­response infection relationship (e.g. derived from ‘feeding’ trials with healthy 

adults or from information collected during outbreak investigations) for strains of the same 

pathogen without antibiotic­resistance. What appears more limiting are dose­response models 

describing the probability of illness based on the conditional probability of infection, and for 

people already compromised, such as those undergoing antibiotic therapy. However, while there 

is definitive data on pARB being more pathogenic or causing more severe illness than their 

antimicrobial­susceptible equivalents (Helms et al. 2004; Helms et al. 2005; Barza 2002; Travers 

and Barza 2002), that may not always be the case (Evans et al. 2009; Wassenaar et al. 2007). 

Nonetheless, clear examples of excess mortality include associated blood stream infections 

(BSIs) for methicillin resistant Staphylococcus aureus (MRSA) and from 3
rd 

generation 
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cephalosporin resistant E. coli (G3CREC). In 2007, 27,711 cases of MRSA were associated with 

5,503 excess deaths and 255,683 excess hospital days in participating European countries and 

15,183 episodes of G3CREC BSIs caused 2,712 excess deaths and 120,065 extra hospital days 

(de Kraker et al. 2011). The authors predict that the combined burden of resistance of MRSA 

and G3CREC will likely lead to a predicted incidence of 3.3 associated deaths per 100,000 

inhabitants in 2015. Yet for many regions of the world, such predictions are less well understood. 

The final step of MRA is risk characterization, which integrates the outputs from the hazard 

identification, the hazard characterization, dose­response and the exposure assessment (discussed 

in the next section) with the intent to generate an overall estimate of the risk. This estimate may 

be expressed in various measures of risk, for example in terms of individual or population risk, 

or an estimate of annual risk based on exposure to specific hazard(s). Depending on the purpose 

of the risk assessment, the risk characterization can also include the key scientific assumptions 

used in the risk assessment, sources of variability and uncertainty, and a scientific evaluation of 

risk management options. 

Environmental exposure assessment 

Based on our conceptualization of the processes important to undertake HHRA of ARB (Figure 

1), most elements related to ARB development in environmental media (processes 1, 2 and 4) 

have been addressed in the Hazard Identification and Hazard Characterization section. Here we 

focus on describing important environmental compartments for and human exposure to ARB 

(processes 3 and 6, Figure 1). Hence, critical to exposure assessment are the concentrations of 

selecting environmental factors (such as antibiotics) and along with ARB, their fate and transport 

to points of human uptake. For a particular human health risk assessment of ARB it would be 
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important to select/expand on individual pathway scenarios (identifying critical environmental 

compartments to human contact) relevant to the antibiotic/resistance determinants identified in 

the problem formulation and hazard characterization stages. 

Compartments of potential concern include soil environments receiving animal manure or 

biosolids, compost, and lagoons, rivers and their sediments receiving wastewaters (Chen et al. 

2013). More traditional routes of human exposures to contaminants that could include eARB and 

pARB are drinking water, recreational and irrigation waters impacted by sewage and antibiotic 

production wastewaters, food, exposure to air impacted by farm buildings and exposure to farm 

animal manures as discussed by Pruden et al. (2013). What is emerging as an important research 

gap is the in­situ development of ARB within biofilms (Boehm et al. 2009) and their associated 

free­living protozoa that may protect and transport ARB (Abraham 2010) to and within drinking 

water systems (Schwartz et al. 2003; Silva et al. 2008). This latter route could be particularly 

problematic for hospital drinking water systems where an already vulnerable population is 

exposed. Also with the increasing use and exposures to domestically­collected rainwater, 

atmospheric fall­out of ARB may ‘seed’ household systems (Kaushik et al. 2012). 

Having identified antibiotic concentrations and pathogen densities in the environment, and 

possible levels/rates of ARB generation in each environmental compartment, a range of fate and 

transport models are available to estimate the amounts of antibiotics, pathogens, ARB and ARG 

at points of human contact (processes 3 and 6, Figure 1). Such models are largely based on 

hydrodynamics, with pathogen­specific parameters to account for likely inactivation/predation in 

soil and aquatic environments, such as sunlight inactivation (Cho et al. 2012; Ferguson et al. 

2010; Bradford et al. 2013). A key aspect of the fate and transport models is to account for the 

inherent variability of any system component. In addition, our uncertainties in assessing model 
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parameter values should also be factored into fate and transport models such as by using 

Bayesian synthesis methods (Williams et al. 2011; Albert et al. 2008). More recent models are 

including Bayesian learning algorithms that help to integrate information using meteorologic, 

hydrologic, and microbial explanatory variables to better account for parameter uncertainties 

(Motamarri and Boccelli 2012; Dotto et al. 2012). Overall, these models also help to identify 

management opportunities to mitigate exposures to ARB/antibiotics and are an important aspect 

to include in describing the pathways of hazards to points of human exposure in any risk 

assessment. 

Multi­criteria decision analysis (MCDA) and risk ranking methods 

Considering the complexity of exposure pathways associated with environmental ARB risks and 

the large uncertainty in the input data for some nodes along the various exposure pathways, 

outputs would inevitably be difficult to interpret by decision­makers, and could in fact be 

counter­productive. As such, there is merit in considering decision analysis approaches for 

prioritizing risks, to guide resource allocation and data collection activities, and to facilitate 

decision­making. Whereas there is a range of ranking options, use of weightings, selecting 

criteria (Pires and Hald 2010; Cooper et al. 2008) and failure mode and effects analysis (Pillay 

and Wang 2003); overall in the area of microbial risk assessment there is a consolidation to 

MCDA approaches, that may include Bayesian algorithms (Ruzante et al. 2010; Lienert et al. 

2011; Ludwig et al. 2013). Hence, further discussion of MCDA follows next. 

Approaches such as MCDA are designed to provide a structured framework for making choices 

where multiple factors need to be considered in the decision­making process. MCDA is a well­

established tool that can be used for evaluating and documenting the importance assigned to 

22





 

 

               

                 

            

               

             

               

               

              

              

              

              

              

              

             

          

          

                

              

               

             

                

               

          

Page 23 of 41 

different factors in ranking risks (Lienert et al. 2011), albeit heavily dependent on expert opinion. 

In the context of MRA it has been used to rank foodborne microbial risks based on multiple 

factors including public health, market impacts, consumer perception and acceptance, and social 

sensitivity (Ruzante et al. 2010), as well as to prioritize and select interventions to reduce 

pathogen exposures (Fazil et al. 2008). Examples of MCDA applications in structuring decisions 

for managing ecotoxicological risks have also been reported (Linkov et al. 2006; Semenzin et al. 

2008) and provide useful MCDA approaches to consider. MCDA could be used, for example, to 

evaluate and rank the relative risks between habitats highly polluted with antibiotics, ARG and 

their determinants, as described above as possible ‘hot­spots’ for HGT and development of ARB. 

Likewise, it could be applied to evaluate the relative contribution of co­selecting agents (e.g. 

detergents, biocides, metals, nanomaterials) from various sources to the overall risk of ARB in 

the environment. Moreover, for a range of antibiotics considered to be of environmental concern, 

MCDA approaches could be used for risk ranking according to criteria based on relevant 

contributing factors, which have been discussed here (e.g. mobility of resistance determinants in 

genetic elements, antibiotic resistance transfer rates in different environmental compartments, 

accumulation levels of antibiotics in environmental compartments, environmental fate and 

transport to exposure points). It is also important to identify in the MCDA process the low 

probability but high impact ‘one­time­event’ types of risk event, as raised in the introduction. 

Because MCDA techniques rely on expert opinion (which is often regarded as a limitation of 

such approaches), well­structured and recognized elicitation practices should be used in order to 

avoid introduction of biases and errors by subjective scoring. On the flipside, one of their main 

advantages is that they capture a consensus opinion among an expert group about the most 

relevant criteria and their relative weight on the decision. 
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Important research gaps to progress HHRA of antibiotic resistance 

The importance of environmental selection for ARB was identified in the workshop, as were 

areas discussed here as research gaps. In particular, specific attention should be paid to 

contaminated habitats (‘hot­spots’) in which antibiotics, co­selecting agents, bacteria carrying 

resistance determinants on mobile genetic elements and favourable conditions for bacterial 

growth and activity prevail at the same time – all conditions expected to favour HGT. However, 

as such data are currently very limited, alternative ways and possible experimental methods to 

address these data gaps for human health risk assessment were also evaluated during the 

workshop, as now summarized along the process steps identified in Figure 1. 

Assays to determine minimum selective concentration (MSC) – Processes 1, 2 and 4 

Assays could be developed to measure minimum selective concentration (MSC) (Gullberg et al. 

2011) for a range of antibiotics and environmental conditions. For example, assays could be 

developed and validated in sandy and clay soils, different sediments, and water types, with 

isogenic pairs of the model organism inoculated into the matrix of choice and subjected to a 

titration of the selective agent to sufficiently high dilution. Selection at sub­inhibitory 

concentrations and assay development for environmental matrices is a key area of research that 

needs addressing, but overall care is needed when interpreting ex­situ studies and extrapolating 

to in­situ environmental conditions, including how to deal with ill­defined hazard mixtures in the 

environment. 

Assays to identify environmental ‘hot­spots’ – for Processes 1, 2 and 4 

Here we define ‘hot­spots’ as locations where a high­level of HGT and antibiotic­resistance 

develop. Hot­spots may for instance include aquatic environments affected by pharmaceutical 
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industry effluents, aquaculture or sewage discharges and terrestrial environments affected by the 

deposition of biosolids or animal manures. The degree of persistence of antibiotic resistance (i.e. 

the rate by which resistance disappears without an environmental selection pressure for 

resistance) must also be considered for risk assessment and will depend on the fitness cost of 

resistance. However, the fitness cost within complex and variable environments are not easy to 

assess. Furthermore, standard methods for evaluating environmental selection pressures in 

complex microbial communities are not developed, but several experimental approaches are 

possible and are described elsewhere (Brandt et al. 2009; Berg et al. 2010). 

The approaches identified could be lab based (to assess the potency of known 

compounds/mixtures) or applied in the field to assess if the environment in question (with its 

unknown mixture of chemicals present etc.) is a ‘hot­spot’. Defining “critical exposure levels” is 

therefore an important HHRA output to aid management activities, which will likely vary 

between environmental compartments and within, depending on the location. 

Screening for novel resistance determinants – to reduce Process 2 

Screening procedures could be introduced early in the development cycle of novel antibiotics to 

ensure that existing resistance determinants are not prevalent in environmental compartments. 

Marked recipient strains could be inoculated into environmental matrices e.g. soil, biosolids or 

faecal slurry (with sterilised matrix equivalents as negative controls), incubated and then seeded 

onto media containing the study compound and a selective antibiotic to recover marked recipient 

strains demonstrating resistance. Plasmids or the entire genome of the recipient could then be 

cloned into small insert expression vectors, transformed into E. coli, or other hosts, and seeded 
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back onto media containing the study compound. In this way novel resistance determinants 

would be identified. 

Alternatively functional metagenomics could be used to identify novel resistance determinants in 

metagenomic DNA (Allen et al. 2009). In brief, DNA would be extracted from an environmental 

sample, cloned into an expression vector and transformed into a bacterial host such as E. coli. 

Transformants can then be screened on the study compound and resistance genes identified using 

transposon mutagenesis followed by sequencing and bioinformatic analyses. This would allow 

detection of novel resistance determinants that may not be plasmid borne, yet may transfer to 

other pathogens. 

Dose­response data needs – for Processes 3, 5, and 6 

The authors were unaware of dose­response data representing a combined ARG and a recipient, 

previously susceptible pathogen dose and human or animal disease (processes 3 and 5, Figure 1). 

In contrast, as discussed in a section above, various examples illustrate increased morbidity and 

mortality when humans are exposed to pARB. Hence, existing published dose­response models 

for non­resistant pathogens (Haas et al. 1999) may not be appropriate to use beyond the endpoint 

of infection, and further dose­response models addressing people of various life­stages need to 

be described and summarized to facilitate pARB risk assessments. There is also a need to 

develop dose­response information for secondary illness endpoints (sequelae) resulting from 

pARB infections. 

Regarding antibiotic concentration­time of exposure giving rise to selection of pARB within a 

human (for co­uptake of eARB and sensitive pathogen), safety could be based on the effective 

concentration for the specific antibiotic under consideration. In other words, screening values to 
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determine whether further action is warranted could be derived from the acute or mean daily 

antibiotic intake, with uncertainty factors applied as appropriate, until future research is 

undertaken on pathogen antibiotic­response changes in the presence of specific antibiotic 

treatment. Alternatively, epidemiological data from existing clones of antibiotic­resistant strains 

(e.g. NDM­1) could provide useful data for dose­response and exposure assessments. 

Options for ranking risks – overall HHRA 

In the absence of fully quantitative data to undertake a HHRA, risk­ranking approaches based on 

exposure assessment modelling could be adopted and developed to inform allocation of 

resources for data generation as part of a human health risk assessment of ARB. (Evers et al. 

2008) present one such approach in the context of food safety for estimating the relative 

contribution of Campylobacter spp. sources and transmission routes on exposure per person­day 

in the Netherlands. Their study included 31 transmission routes, related to direct contact with 

animals, ingestion of food and water, and resulted in a ranking of the most significant sources of 

exposure. Although their study focused on foodborne transmission routes and did not deal with 

antibiotic resistant Campylobacter strains, a similar approach could be applied to estimate human 

exposure to ARB hazards considering the environmental exposure pathways described by Evers 

et al. (2008). This would require data on the prevalence of ARG, ARB as well as levels of 

antibiotics present in all exposure routes to be considered in the risk assessment. While such an 

approach is probably not currently feasible, improved environmental data for a select number of 

pathogen­gene combinations could be developed in the future. 
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An alternative approach to capturing expert and other stakeholder knowledge could be to 

develop a Bayesian network based on expert knowledge and add to that as data become available 

to improve the knowledge base, as described for campylobacters in foods by (Albert et al. 2008). 

Conclusions 

Given the intent of this review to be of value to an international audience, and that the 

precautionary approach is used in many jurisdictions, there are many risk management 

approaches that make sense to implement now, before antibiotic­resistance issues worsen, as 

indicated in the related risk management paper resulting from the workshop (Pruden et al. 2013). 

Furthermore, many current management schemes now start the whole process from a 

management perspective and drill down to more quantitative assessments only when needed to 

make a better management action, such as in the World Health Organization’s Water Safety 

Plans (WHO 2009). In this paper we provide a proposal for the inclusion of environmental 

aspects of antibiotic resistance development in the processes of any HHRA addressing ARB. In 

general terms, MRA appears suitable to address environmental human health risks posed by the 

environmental release of antibiotics, ARB and ARG, yet there are too many data gaps to realize 

that goal today. Further development of such an approach requires data mining from previous 

epidemiological investigations to aid in model development, parameterization and validation, as 

well as the collection of new information, particularly related to conditions and rates of ARB 

development in various ‘hot­spot’ environments, and for various human health dose­response 

unknowns identified in this paper. In the near­term, options likely to provide a first­pass 

assessment of risks seem likely to be based on MCDA approaches, which could be facilitated by 

Bayesian Network models. Once some ‘trust’ in such MRA models has been achieved, they may 
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well facilitate scenario testing of what control points may be most effective in reducing risks and 

which risk­driving attributes should be specifically considered and minimised during the 

development of novel antibiotics. 
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Figure Legend 

Figure 1. Conceptual model describing the environmental pathways that result in an increased 

risk of human and animal infection with antibiotic resistant bacteria. The first six processes 

(italics) are further described in the text. The last two processes are not driven by environmental 

factors and not discussed in detail. 
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